

TOPSiDE - Concept of an EIC Detector

José Repond Argonne National Laboratory

DIS 2018 Kobe, Japan April 16 – 20, 2018

Electron-Ion Collider EIC

Polarized ep, eA collider

Vs = 35 - 180 GeVLuminosity = $10^{34} \text{ cm}^{-2}\text{s}^{-1}$

Two possible sites

Brookhaven \rightarrow eRHIC Jefferson lab \rightarrow JLEIC

Scientific goals

Study of perturbative & non-perturbative QCD Tomography (including transverse dimension) of the nucleon, nuclei Understanding the nucleon spin Discovery of gluon saturation...

Construction to start in 2025

Nuclear physics community optimistic about its realization CD0 expected in FY2019 (making it a project)

To achieve the EIC physics goals we need

100% acceptance for all particles produced (acceptance is luminosity!)
Excellent momentum/energy resolution
PID for all particles

→ This requires full integration of the central, forward detectors and the beamline

Particle list at MC hadron level

Particle ID	P_{x}	P _y	P _z
11 (e ⁻)	-0.743	-0.636	-4.842
321 (K ⁺)	0.125	0.798	6.618
-211 (π ⁻)	0.232	0.008	3.776
-211 (π ⁻)	0.151	-0.007	4.421
211 (π⁺)	0.046	0.410	2.995
111 (π^0)	-0.093	0.048	1.498
2112 (p)	0.115	-0.337	31.029
211 (π+)	0.258	0.145	6.336
310 (K _S ⁰)	0.385	-0.408	3.226

DIS event

$$E_e = 5 \text{ GeV}$$

 $E_p = 60 \text{ GeV}$

Detector output

We want a detector which provides the same type of information

TOPSIDE – 5D Concept

Timing Optimized PID Silicon Detector for the EIC

Salient features

Symmetric design of the central detector (-3 < η < 3)

Unlike the HERA detectors (ZEUS and H1) Electrons, photons and hadrons go everywhere

Silicon tracking

Vertex, outer, and forward/backward trackers

Imaging calorimetry with very fine granularity

Silicon ECAL and (gaseous or scintillator) HCAL Close to 4π coverage

Ultra-fast silicon

10 ps time resolution for Time-of-Flight (PID)

Superconducting solenoid

2.5 – 3 Tesla
Outside the barrel calorimeters

Measure E, x, y, z, t

TOPSIDE – 5D Concept

Timing Optimized PID Silicon Detector for the EIC

Salient features

Forward (hadron) direction (3 < eta < 5)

Gaseous RICH for momenta between 10 and 50 GeV/c (within a cone of <10°)

Dipole or toroid for momentum measurement

Ultra-fast silicon for tracking and TOF (PID for momenta up to 10 GeV/c)

Backward (electron) direction (-3 > eta > -5)

Crystal calorimeter for optimal energy resolution

Luminosity, polarization, low-Q² tagging

No additional

Preshower, TOF, TRD, Cerenkov, muon chambers ← Not needed

in front of the calorimeter

TOPSiDE – **5D Concept**

Area of silicon ~1,400 m² or \$14M @ \$1/cm² (Compare: CMS HGCAL upgrade ~ 600 m²)

TOPSIDE – 5D Concept

The case for a hermetic (4π) hadron calorimeter

The EIC is a precision machine (at the 1% level)

E_{neutral} is small in average, but there are large fluctuations

Electron ID is needed in the barrel region and is helped by a hadron calorimeter

Background rejection requires hermeticity (detection of all particles)

Kinematic reconstruction needs all hadrons

- → In particular for charged current events (no electron)
- \rightarrow At medium/large x or low y (where the electron method fails \rightarrow double angle)

$$\frac{\delta x}{x} = \frac{1}{y} \frac{\delta E_e}{E_e} = \frac{1}{1 - y} \frac{\delta E_q}{E_q}$$

Special features/challenges of TOPSiDE

Imaging calorimetry
 Ultra-fast silicon
 → next slides

Tilted tracking sensors

Imaging Calorimetry

Replace

Tower structure with very fine granularity (lateral and longitudinally)
Few 1,000 channels → few 10,000,000 channels
Option to reduce resolution on single channels to low-bit depth

Technologies developed in past decade

Silicon sensors with $1 \times 1 \text{ cm}^2$, $0.5 \times 0.5 \text{ cm}^2$ and 0.16 cm^2 pixels Scintillator strips (4.5 x 0.5 cm²) or scintillator pads (3 x 3 cm²) Resistive Plate Chambers with $1 \times 1 \text{ cm}^2$ pads Micromegas and GEMs with $1 \times 1 \text{ cm}^2$ pads

These technologies have been (mostly) validated

Advantages of Imaging Calorimetry I

Particle ID

Electrons, muons, hadrons → (almost) trivial Muon system redundant

Software compensation

Typical calorimeters have e/h \neq 1 Weighting of individual sub-showers possible \rightarrow significant improvement in $\sigma_E^{\ had}$

Leakage corrections

Use longitudinal shower information to compensate for leakage \rightarrow significant improvement in σ_E^{had}

Measure momentum of charged particles exiting calorimeter

Advantages of Imaging Calorimetry II

Gain monitoring

Reconstruct track segments within hadronic showers

Utilize MIP signal to monitor gain Assess local radiation damage

Identify underlying events

Multiparton interactions generate background of low energy particles

This background can be identified and subtracted (LHC)

Application of Particle Flow Algorithms (PFAs)

Use PFAs to reconstruct the energy of hadronic jets

Particle Flow Algorithms

Attempt to measure the energy/momentum of each particle in a hadronic jet with the detector subsystem providing the best resolution

Particles in jets	Fraction of energy	Measured with	Resolution [σ ²]	
Charged	65 %	Tracker	Negligible 7	
Photons	25 %	ECAL with 15%/√E	0.07 ² E _{jet}	8%/√E
Neutral Hadrons	10 %	ECAL + HCAL with 50%/√E	0.16 ² E _{jet}	
Confusion	If goal is to achieve a resolution of $30\%/\sqrt{E} \rightarrow$		≤ 0.24 ² E _{jet}	Г

PANDORA PFA based on ILD detector concept

Factor ~2 better jet energy resolution than previously achieved EIC environment: particularly suited for PFAs, due to low particle multiplicity and low momenta

ULTRA - FAST SILICON

Needed for 5D Concept

Implement in calorimeter and tracker for Particle ID $(\pi - K - p \text{ separation})$

Resolution of 10 ps \rightarrow separation up to \sim 7 GeV/c

Current status

Being developed based on the LGAD technology Best timing resolution about 27 ps

Future

Further improvements ongoing

→ Several groups worldwide

Argonne Silicon Development

Testing

Assembly of test bench for silicon sensors started

→ Acquired necessary tools: fast scope, HV, LV supplies, sources, clean space...

Opening for a new postdoc

 \rightarrow Testing of sensors to start in 1 – 2 months

Participation in testing of sensors (ATLAS upgrade)in Fermilab test beam

Simulation

Simulation of HVCMOS sensors started Goal is to improve the timing resolution

→ Implementation of additional amplification layer

Time distribution system

Timing jitter of < 10 ps required Looking into RF technologies

Collaboration with

Argonne HEP (ATLAS), Geneva, Santa Cruz, Fermilab, (Kansas)...

Silicon Tracker: Considering tilted sensors

Taken from Peter Kostka and Alessandro Polini (LHeC studies)

Non Tilted Sensor Planes

Tilted Sensor Planes

More hits, 25% less material (in X_0)

To be implemented in TOPSiDE simulation

TOPSIDE in Simulation

Starting point

SiD detector concept developed by ILC community

TOPSIDE

Some initial modifications from SiD

Longer barrel, lower B-field, shallower calorimeters

No performance tuning yet (detector optimized for $|\eta| < 3.0$)

Simulation

Entire chain available

→ Event generation, GEANT4, digitization, reconstruction, event display, analysis

Introduced DD4Hep

→ One geometry file for simulation, digitization, reconstruction, analysis

Ongoing replacement of parts difficult to maintain/develop

→ digitization, tracking → generic tracking

Changes to geometry → Development of workflow for 'rapid detector iteration'

Simulation Studies

Single Particle Resolutions

Generated photons with 1 - 30 GeV Spread over most of solid angle

TOF PID using silicon with 10 ps resolution

Determination of TOF Requirement

Using timing information in tracker and ECAL For each track fit time versus path length

E [GeV]

Photon energy resolution

Comparison of true and reconstructed F₂

Reconstruction of the F₂ Structure Function

Use MSTW PDF to generate DIS events
Use CTEQ PDF to correct for acceptance
(problem with CTEQ phase space)

Validation of entire simulation tool chain

This is only a prototype

Number of channels

ECAL

Silicon pixels with an area of 0.25 cm² Total area about 1,400 m²

- → 51M channels
- → Resolution per pixel ~14-bit

HCAL

Scintillator pads with an area of 3 x 3 cm 2 with 14-bit/pad resolution or RPCs with 1 x 1 cm 2 readout pads with 1-bit/pad resolution Total area about m 2

→ 3M (Scintillator) -> 26M (RPC) channels

Tracker/RICH

 \rightarrow <1M channels

Total

Of the order of 55 – 80 M channels

TOPSIDE

Conclusions

Based on silicon Features ultra-fast silicon, imaging calorimetry \rightarrow 5D concept Completely hermetic

Advantages of TOPSiDE

Simplicity of design (limited number of subsystems)

Based on silicon, which is robust (no gas, high voltages, stable operation, radiation hardness)

Excellent kinematic reconstruction

Excellent background rejection (hermeticity)

Minimal 'dead' material in front of calorimeters

No additional TOF, TRD, Cerenkov, muon system

Provides list of particles, similar to MC

Next steps

Complete revamping of simulation chain Implement TOF PID Tune ECAL sampling structure Develop Ultra-Fast Silicon Detectors

Backup Slides

TOPSIDE: A detector concept for the EIC

Goal

Measurement and identification of all particles emerging from collisions individually

TOPSIDE concept

 4π , multipurpose, hermetic detector Based mostly on silicon (tracker, calorimeter) Finely segmented calorimeter \rightarrow Particle flow Use of ultra-fast silicon (in tracker, calorimeter) for TOF Large solenoid outside barrel calorimeter RICH in hadron direction for particle ID (10 – 50 GeV/c) Toroid/dipole in forward direction for momentum measurement

Crystal calorimeter

SD Calorimeter

Vertex detector

Electron beam

Vertex detector

Electron quads

Superconducting solenoid

No additional TOF, Cerenkov detectors, transition radiation detectors, muon chambers

→ not needed

